Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.364
Filter
1.
Article in English | MEDLINE | ID: mdl-38594793

ABSTRACT

Abstract: In 2023, an increased number of urogenital and anorectal infections with Neisseria meningitis serogroup Y (MenY) were reported in New South Wales (NSW). Whole genome sequencing (WGS) found a common sequence type (ST-1466), with limited sequence diversity. Confirmed outbreak cases were NSW residents with a N. meningitidis isolate matching the cluster sequence type; probable cases were NSW residents with MenY isolated from a urogenital or anorectal site from 1 July 2023 without WGS testing. Of the 41 cases, most were men (n = 27), of whom six reported recent contact with a female sex worker. Five cases were men who have sex with men and two were female sex workers. Laboratory alerts regarding the outbreak were sent to all Australian jurisdictions through the laboratories in the National Neisseria Network. Two additional states identified urogenital MenY ST-1466 infections detected in late 2023. Genomic analysis showed all MenY ST-1466 sequences were interspersed, suggestive of an Australia-wide outbreak. The incidence of these infections remains unknown, due to varied testing and reporting practices both within and across jurisdictions. Isolates causing invasive meningococcal disease (IMD) in Australia are typed, and there has been no MenY ST-1466 IMD recorded in Australia to end of March 2024. Concerns remain regarding the risk of IMD, given the similarity of these sequences with a MenY ST-1466 IMD strain causing a concurrent outbreak in the United States of America.


Subject(s)
Meningococcal Infections , Neisseria meningitidis , Sex Workers , Sexual and Gender Minorities , Male , Humans , Female , Serogroup , Homosexuality, Male , Australia/epidemiology , Meningococcal Infections/epidemiology , Disease Outbreaks
2.
Vaccine ; 42(12): 2975-2982, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38570270

ABSTRACT

BACKGROUND: Pneumococcal carriage is the primary reservoir for transmissionand a prerequisite for invasive pneumococcal disease. Pneumococcal Conjugate Vaccine 13 (PCV13) showed a 62% efficacy in protection against experimental Streptococcus pneumoniae serotype 6B (Spn6B) carriage in a controlled human infection model (CHIM) of healthy Malawian adults. We, therefore, measured humoral responses to experimental challenge and PCV-13 vaccination and determined the association with protection against pneumococcal carriage. METHODS: We vaccinated 204 young, healthy Malawian adults with PCV13 or placebo and nasally inoculated them with Spn6B at least four weeks post-vaccination to establish carriage. We collected peripheral blood and nasal lining fluid at baseline, 4 weeks post-vaccination (7 days pre-inoculation), 2, 7, 14 and > 1 year post-inoculation. We measured the concentration of anti-serotype 6B Capsular Polysaccharide (CPS) Immunoglobulin G (IgG) and IgA antibodies in serum and nasal lining fluid using the World Health Organization (WHO) standardised enzyme-linked immunosorbent assay (ELISA). RESULTS: PCV13-vaccinated adults had higher serum IgG and nasal IgG/IgA anti-Spn6B CPS-specific binding antibodies than placebo recipients 4 to 6 weeks post-vaccination, which persisted for at least a year after vaccination. Nasal challenge with Spn6B did not significantly alter serum or nasal anti-CPS IgG binding antibody titers with or without experimental pneumococcal carriage. Pre-challenge titers of PCV13-induced serum IgG and nasal IgG/IgA anti-Spn6B CPS binding antibodies did not significantly differ between those that got experimentally colonised by Spn6B compared to those that did not. CONCLUSION: This study demonstrates that despite high PCV13 efficacy against experimental Spn6B carriage in young, healthy Malawian adults, robust vaccine-induced systemic and mucosal anti-Spn6B CPS binding antibodies did not directly relate to protection.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Adult , Humans , Infant , Vaccines, Conjugate , Serogroup , Antibody Formation , Immunoglobulin G , Immunoglobulin A/analysis , Pneumococcal Vaccines , Antibodies, Bacterial
3.
Vaccine ; 42(12): 3075-3083, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38584060

ABSTRACT

As the major outer membrane protein (OMP) presents in the Pasteurella multocida envelope, OmpH was frequently expressed for laboratory assessments of its immunogenicity against P. multocida infections, but the results are not good. In this study, we modified OmpH with dendritic cell targeting peptide (Depeps) and/or Salmonella FliCd flagellin, and expressed three types of recombinant proteins with the MBP tag (rDepeps-FliC-OmpH-MBP, rDepeps-OmpH-MBP, rFliC-OmpH-MBP). Assessments in mouse models revealed that vaccination with rDepeps-FliC-OmpH-MBP, rDepeps-OmpH-MBP, or rFliC-OmpH-MBP induced significant higher level of antibodies as well as IFN-γ and IL-4 in murine sera than vaccination with rOmpH-MBP (P < 0.5). Vaccination with the three modified proteins also provided increased protection (rDepeps-FliC-OmpH-MBP, 70 %; rDepeps-OmpH-MBP, 50 %; rFliC-OmpH-MBP, 60 %) against P. multocida serotype D compared to vaccination with rOmpH-MBP (30 %). In mice vaccinated with different types of modified OmpHs, a significantly decreased bacterial strains were recovered from bloods, lungs, and spleens compared to rOmpH-MBP-vaccinated mice (P < 0.5). Notably, our assessments also demonstrated that vaccination with rDepeps-FliC-OmpH-MBP provided good protection against infections caused by a heterogeneous group of P. multocida serotypes (A, B, D). Our above findings indicate that modification with DCpep and Salmonella flagellin could be used as a promising strategy to improve vaccine effectiveness.


Subject(s)
Pasteurella Infections , Pasteurella multocida , Animals , Mice , Serogroup , Pasteurella Infections/prevention & control , Flagellin/metabolism , Bacterial Outer Membrane Proteins , Peptides/metabolism , Dendritic Cells , Bacterial Vaccines
4.
J Med Microbiol ; 73(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38567639

ABSTRACT

Background. Invasive Group B Streptococcus (GBS; Streptococcus agalactiae) remains a leading cause of infant morbidity and mortality. Intrapartum antibiotic prophylaxis (IAP) has been implemented in many countries with a reduction in early-onset disease, but an effective vaccine may further reduce the disease burden. Candidate vaccines targeting capsular polysaccharides and surface proteins are now in clinical trials.Methods. Using whole-genome sequencing and phenotypic antimicrobial susceptibility testing, we characterized sterile-site GBS isolates recovered from Western Australian infants between 2004 and 2020. Characteristics were compared between three time periods: 2004-2008, 2009-2015 and 2016-2020.Results. A total of 135 isolates were identified. The proportion of serotype III (22.7 % in Period 1 to 47.9 % in Period 3, P=0.04) and clonal complex 17 (13.6-39.6 %, P=0.01) isolates increased over time. Overall coverage of vaccines currently being trialled was >95 %. No isolates were penicillin resistant (MIC>0.25 mg l-1), but 21.5 % of isolates had reduced penicillin susceptibility (MIC>0.12 mg l-1) and penicillin MIC increased significantly over time (P=0.04). Clindamycin resistance increased over time to 45.8 % in the latest period.Conclusions. Based on comprehensive characterization of invasive infant GBS in Western Australia, we found that coverage for leading capsular polysaccharide and surface protein vaccine candidates was high. The demonstrated changes in serotype and molecular type highlight the need for ongoing surveillance, particularly with regard to future GBS vaccination programmes. The reduced susceptibility to IAP agents over time should inform changes to antibiotic guidelines.


Subject(s)
Streptococcal Infections , Vaccines , Infant , Humans , Streptococcus agalactiae , Streptococcal Infections/drug therapy , Western Australia/epidemiology , Australia/epidemiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Penicillins , Serogroup , Vaccines/therapeutic use , Microbial Sensitivity Tests , Drug Resistance, Bacterial
5.
PLoS One ; 19(4): e0297098, 2024.
Article in English | MEDLINE | ID: mdl-38564583

ABSTRACT

BACKGROUND: Acute otitis media (AOM) is a common childhood disease frequently caused by Streptococcus pneumoniae. Pneumococcal conjugate vaccines (PCV7, PCV10, PCV13) can reduce the risk of AOM but may also shift AOM etiology and serotype distribution. The aim of this study was to review estimates from published literature of the burden of AOM in Europe after widespread use of PCVs over the past 10 years, focusing on incidence, etiology, serotype distribution and antibiotic resistance of Streptococcus pneumoniae, and economic burden. METHODS: This systematic review included published literature from 31 European countries, for children aged ≤5 years, published after 2011. Searches were conducted using PubMed, Embase, Google, and three disease conference websites. Risk of bias was assessed with ISPOR-AMCP-NPC, ECOBIAS or ROBIS, depending on the type of study. RESULTS: In total, 107 relevant records were identified, which revealed wide variation in study methodology and reporting, thus limiting comparisons across outcomes. No homogenous trends were identified in incidence rates across countries, or in detection of S. pneumoniae as a cause of AOM over time. There were indications of a reduction in hospitalization rates (decreases between 24.5-38.8% points, depending on country, PCV type and time since PCV introduction) and antibiotic resistance (decreases between 14-24%, depending on country), following the widespread use of PCVs over time. The last two trends imply a potential decrease in economic burden, though this was not possible to confirm with the identified cost data. There was also evidence of an increase in serotype distributions towards non-vaccine serotypes in all of the countries where non-PCV serotype data were available, as well as limited data of increased antibiotic resistance within non-vaccine serotypes. CONCLUSIONS: Though some factors point to a reduction in AOM burden in Europe, the burden still remains high, residual burden from uncovered serotypes is present and it is difficult to provide comprehensive, accurate and up-to-date estimates of said burden from the published literature. This could be improved by standardised methodology, reporting and wider use of surveillance systems.


Subject(s)
Otitis Media , Pneumococcal Infections , Child , Humans , Infant , Streptococcus pneumoniae , Financial Stress , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Otitis Media/epidemiology , Otitis Media/prevention & control , Pneumococcal Vaccines/therapeutic use , Serogroup , Vaccines, Conjugate/therapeutic use
6.
Hum Vaccin Immunother ; 20(1): 2325745, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38566496

ABSTRACT

As higher-valent pneumococcal conjugate vaccines (PCVs) become available for pediatric populations in the US, it is important to understand healthcare provider (HCP) preferences for and acceptability of PCVs. US HCPs (pediatricians, family medicine physicians and advanced practitioners) completed an online, cross-sectional survey between March and April 2023. HCPs were eligible if they recommended or prescribed vaccines to children age <24 months, spent ≥25% of their time in direct patient care, and had ≥2 y of experience in their profession. The survey included a discrete choice experiment (DCE) in which HCPs selected preferred options from different hypothetical vaccine profiles with systematic variation in the levels of five attributes. Relative attribute importance was quantified. Among 548 HCP respondents, the median age was 43.2 y, and the majority were male (57.9%) and practiced in urban areas (69.7%). DCE results showed that attributes with the greatest impact on HCP decision-making were 1) immune response for the shared serotypes covered by PCV13 (31.4%), 2) percent of invasive pneumococcal disease (IPD) covered by vaccine serotypes (21.3%), 3) acute otitis media (AOM) label indication (20.3%), 4) effectiveness against serotype 3 (17.6%), and 5) number of serotypes in the vaccine (9.5%). Among US HCPs, the most important attribute of PCVs was comparability of immune response for PCV13 shared serotypes, while the number of serotypes was least important. Findings suggest new PCVs eliciting high immune responses for serotypes that contribute substantially to IPD burden and maintaining immunogenicity against serotypes in existing PCVs are preferred by HCPs.


Subject(s)
General Practitioners , Pneumococcal Infections , Child , Humans , Male , Female , United States , Infant , Adult , Child, Preschool , Heptavalent Pneumococcal Conjugate Vaccine , Pneumococcal Vaccines , Streptococcus pneumoniae , Cross-Sectional Studies , Pneumococcal Infections/prevention & control , Serogroup , Vaccines, Conjugate
7.
PLoS One ; 19(4): e0299691, 2024.
Article in English | MEDLINE | ID: mdl-38568909

ABSTRACT

Streptococcus suis serotype 2 (SS2) is an important porcine pathogen that causes diseases in both swine and human. For rapid SS2 identification, a novel latex agglutination test (LAT) based on heavy-chain variable domain antibody (VH) was developed. Firstly, the soluble 47B3 VH antibody fragment from a phage display library, in which cysteine residues were engineered at the C-terminus, was expressed in Escherichia coli. The purified protein was then gently reduced to form monomeric soluble 47B3 VH subsequently used to coat with latex beads by means of site-specific conjugation. The resulting VH-coated beads gave a good agglutination reaction with SS2. The LAT was able to distinguish S. suis serotype 2 from serotype 1/2, which shares some common sugar residues, and showed no cross-reaction with other serotypes of S. suis or other related bacteria. The detection sensitivity was found to be as high as 1.85x106 cells. The LAT was stable at 4°C for at least six months without loss of activity. To the best of our knowledge, this is the first LAT based on a VH antibody fragment that can be considered as an alternative for conventional antibody-based LAT where VHs are the most favored recombinant antibody.


Subject(s)
Streptococcal Infections , Streptococcus suis , Swine Diseases , Animals , Humans , Swine , Serogroup , Latex Fixation Tests/methods , Immunoglobulin Fragments , Recombinant Proteins/genetics , Escherichia coli/genetics , Streptococcal Infections/microbiology , Swine Diseases/microbiology
8.
Sci Rep ; 14(1): 7929, 2024 04 04.
Article in English | MEDLINE | ID: mdl-38575673

ABSTRACT

Foot and mouth disease (FMD) is a highly contagious, endemic, and acute viral cattle ailment that causes major economic damage in Ethiopia. Although several serotypes of the FMD virus have been detected in Ethiopia, there is no documented information about the disease's current serostatus and serotypes circulating in the Wolaita zone. Thus, from March to December 2022, a cross-sectional study was conducted to evaluate FMDV seroprevalence, molecular detection, and serotype identification in three Wolaita Zone sites. A multistage sample procedure was used to choose three peasant associations from each study region, namely Wolaita Sodo, Offa district, and Boloso sore district. A systematic random sampling technique was employed to pick 384 cattle from the population for the seroprevalence research, and 10 epithelial tissue samples were purposefully taken from outbreak individuals for molecular detection of FMDV. The sera were examined using 3ABC FMD NSP Competition ELISA to find antibodies against FMDV non-structural proteins, whereas epithelial tissue samples were analyzed for molecular detection using real-time RT-PCR, and sandwich ELISA was used to determine the circulating serotypes. A multivariable logistic regression model was used to evaluate the associated risk variables. The total seroprevalence of FMD in cattle was 46.88% (95% CI 41.86-51.88), with Wolaita Sodo Town having the highest seroprevalence (63.28%). As a consequence, multivariable logistic regression analysis revealed that animal age, herd size, and interaction with wildlife were all substantially related to FMD seroprevalence (p < 0.05). During molecular detection, only SAT-2 serotypes were found in 10 tissue samples. Thus, investigating FMD outbreaks and identifying serotypes and risk factors for seropositivity are critical steps in developing effective control and prevention strategies based on the kind of circulating serotype. Moreover, further research for animal species other than cattle was encouraged.


Subject(s)
Cattle Diseases , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Humans , Cattle , Animals , Foot-and-Mouth Disease Virus/genetics , Seroepidemiologic Studies , Cross-Sectional Studies , Ethiopia/epidemiology , Cattle Diseases/diagnosis , Cattle Diseases/epidemiology , Foot-and-Mouth Disease/diagnosis , Foot-and-Mouth Disease/epidemiology , Serogroup , Disease Outbreaks/veterinary , Animals, Wild , Antibodies, Viral
9.
Indian J Med Res ; 159(2): 153-162, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38577856

ABSTRACT

BACKGROUND OBJECTIVES: West Bengal is a dengue-endemic State in India, with all four dengue serotypes in co-circulation. The present study was conceived to determine the changing trends of circulating dengue virus (DENV) serotypes in five consecutive years (2015-2019) using a geographic information system (GIS) during the dengue season in West Bengal, India. METHODS: Molecular serotyping of dengue NS1 sero-reactive serum samples from individuals with ≤5 days of fever was performed using conventional nested reverse transcriptase-PCR. GIS techniques such as Getis-Ord Gi* hotspot analysis and heatmap were used to elucidate dengue transmission based on the received NS1-positive cases and vector data analysis was used to point out risk-prone areas. RESULTS: A total of 3915 dengue NS1 sero-positive samples were processed from most parts of West Bengal and among these, 3249 showed RNA positivity. The major circulating serotypes were DENV 3 (63.54%) in 2015, DENV 1 (52.79%) in 2016 and DENV 2 (73.47, 76.04 and 47.15%) in 2017, 2018 and 2019, respectively. Based on the NS1 positivity, dengue infections were higher in males than females and young adults of 21-30 yr were mostly infected. Getis-Ord Gi* hotspot cluster analysis and heatmap indicate that Kolkata has become a hotspot for dengue outbreaks and serotype plotting on maps confirms a changing trend of predominant serotypes during 2015-2019 in West Bengal. INTERPRETATION CONCLUSIONS: Co-circulation of all the four dengue serotypes was observed in this study, but only one serotype became prevalent during an outbreak. Representation of NS1-positive cases and serotype distribution in GIS mapping clearly showed serotypic shift in co-circulation. The findings of this study suggest the need for stringent surveillance in dengue-endemic areas to limit the impact of dengue and implement better vector-control strategies.


Subject(s)
Dengue Virus , Dengue , Male , Female , Young Adult , Humans , Serogroup , Dengue/epidemiology , Dengue Virus/genetics , Geographic Information Systems , India/epidemiology , RNA, Viral/genetics
10.
Sci Rep ; 14(1): 8287, 2024 04 09.
Article in English | MEDLINE | ID: mdl-38594317

ABSTRACT

The mosquito transmitted dengue virus (DENV) is a major public health problem in many tropical and sub-tropical countries around the world. Both vaccine development and drug development are complex as the species Dengue virus consist of four distinct viruses (DENV 1 to DENV 4) each of which is composed of multiple lineages and strains. To understand the interaction of DENV with the host cell machinery, several studies have undertaken in vitro proteomic analysis of different cell lines infected with DENV. Invariably, these studies have utilized DENV 2. In this study we sought to define proteins that are differentially regulated by two different DENVs, DENV 2 and DENV 4. A 2-dimensional proteomic analysis identified some 300 protein spots, of which only 11 showed differential expression by both DENVs. Of these, only six were coordinately regulated. One protein, prohibitin 1 (PHB1) was downregulated by infection with both DENVs. Overexpression of PHB1 increased DENV protein expression, level of infection and genome copy number. DENV E protein colocalized with PHB, and there was a direct interaction between DENV 2 E protein and PHB1, but not between DENV 4 E protein and PHB1. The low number of proteins showing coordinate regulation after infection by different DENVs is a cause for concern, particularly in determining new druggable targets, and suggests that studies should routinely investigate multiple DENVs.


Subject(s)
Dengue Virus , Dengue , Animals , Humans , Serogroup , Proteomics , Cell Line
11.
Vet Res ; 55(1): 48, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594744

ABSTRACT

Actinobacillus pleuropneumoniae (APP) is a bacterium frequently associated with porcine pleuropneumonia. The acute form of the disease is highly contagious and often fatal, resulting in significant economic losses for pig farmers. Serotype diversity and antimicrobial resistance (AMR) of APP strains circulating in north Italian farms from 2015 to 2022 were evaluated retrospectively to investigate APP epidemiology in the area. A total of 572 strains isolated from outbreaks occurring in 337 different swine farms were analysed. The majority of isolates belonged to serotypes 9/11 (39.2%) and 2 (28.1%) and serotype diversity increased during the study period, up to nine different serotypes isolated in 2022. The most common resistances were against tetracycline (53% of isolates) and ampicillin (33%), followed by enrofloxacin, florfenicol and trimethoprim/sulfamethoxazole (23% each). Multidrug resistance (MDR) was common, with a third of isolates showing resistance to more than three antimicrobial classes. Resistance to the different classes and MDR varied significantly depending on the serotype. In particular, the widespread serotype 9/11 was strongly associated with florfenicol and enrofloxacin resistance and showed the highest proportion of MDR isolates. Serotype 5, although less common, showed instead a concerning proportion of trimethoprim/sulfamethoxazole resistance. Our results highlight how the typing of circulating serotypes and the analysis of their antimicrobial susceptibility profile are crucial to effectively manage APP infection and improve antimicrobial stewardship.


Subject(s)
Actinobacillus Infections , Actinobacillus pleuropneumoniae , Pleuropneumonia , Swine Diseases , Thiamphenicol/analogs & derivatives , Swine , Animals , Serogroup , Microbial Sensitivity Tests/veterinary , Enrofloxacin , Farms , Retrospective Studies , Pleuropneumonia/epidemiology , Pleuropneumonia/veterinary , Pleuropneumonia/microbiology , Anti-Bacterial Agents/pharmacology , Sulfamethoxazole/pharmacology , Trimethoprim/pharmacology , Italy/epidemiology , Swine Diseases/epidemiology , Swine Diseases/microbiology , Actinobacillus Infections/epidemiology , Actinobacillus Infections/veterinary , Actinobacillus Infections/microbiology , Serotyping/veterinary
12.
Trop Anim Health Prod ; 56(3): 124, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38613629

ABSTRACT

The study aimed to assess the impact of feeding Bengal gram residual forage-based pelleted Total Mixed Ration (TMR) with varying concentrate (C) to roughage (R) ratios on feed intake, nutrient utilization, growth, and carcass characteristics in Barbari kids. Sixteen weaned male Barbari kids (av. age, 233 ± 11 days; weight, 13.86 ± 0.76 kg) were divided into two groups (T1 and T2), each receiving different pelleted diets (TMR) with distinct concentrate to roughage ratios (T1 with 60:40; T2 with 40:60). The kids were fed for 133 days, and a digestion trial was conducted at the end of the study. After completion, all kids were slaughtered. Although, kids under T1 consumed higher (P < 0.001) amount of dry matter, and crude protein compared to T2, which was due to a higher concentrate to roughage ratio in T1. But, the average daily body weight gain (ADG) of finisher kids was 88.53, and 79.83 g/d/kid in T1 and T2, respectively; however, the difference was non-significant. Digestibility of organic matter, crude protein, and total carbohydrate was also greater in T1 compared to T2. Total digestible nutrients intake was higher (P < 0.001) in T1; similarly intake of digestible energy, and metabolizable energy were significantly increased (P < 0.01) in T1 compared to T2. Concentrations of volatile fatty acids and NH3-nitrogen were also enhanced (P < 0.05) in T1 compared to T2. We observed similar carcass weight, and dressing percentage in both groups, and carcass composition remained unaffected. The pelleted diet containing greater ratio of concentrate: roughage (60:40) had no additional benefits in terms of ADG, and carcass traits in finisher kids. Therefore, it may be concluded that the Bengal gram residual forage-based pelleted TMR diet containing C40: R60 (TDN 57.13%, DCP 7.64%, ME 9.11MJ/kg feed) is suitable for optimizing growth performance with desirable carcass traits, and meat composition in finisher Barbari kids reared under the intensive system.


Subject(s)
Dietary Fiber , Nutrients , Male , Animals , Phenotype , Serogroup , Eating
13.
Int J Mol Sci ; 25(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38612516

ABSTRACT

The purpose of this study was to compare the retention rate of Adeno-associated viral vector (AAV) gene therapy agents within different subretinal injection systems. The retention of AAV serotype 2-based voretigene neparvovec (VN) and a clinical-grade AAV serotype 8 vector within four different subretinal cannulas from two different manufacturers was quantified. A standardized qPCR using the universal inverted terminal repeats as a target sequence was developed. The instruments compared were the PolyTip® cannula 25 g/38 g by MedOne Surgical, Inc., Sarasota, FL, USA, and three different subretinal injection needles by DORC, Zuidland, The Netherlands (1270.EXT Extendible 41G subretinal injection needle (23G), DORC 1270.06 23G Dual bore injection cannula, DORC 27G Subretinal injection cannula). The retention rate of VN and within the DORC products (10-28%) was comparable to the retention rate (32%) found for the PolyTip® cannula that is mentioned in the FDA-approved prescribing information for VN. For the AAV8 vector, the PolyTip® cannula showed a retention rate of 14%, and a similar retention rate of 3-16% was found for the DORC products (test-retest variability: mean 4.5%, range 2.5-20.2%). As all the instruments tested showed comparable retention rates, they seem to be equally compatible with AAV2- and AAV8-based gene therapy agents.


Subject(s)
Grasshoppers , Parvovirinae , Animals , Serogroup , Drug Delivery Systems , Genetic Therapy , Dependovirus/genetics
14.
J Cell Mol Med ; 28(8): e18292, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38652116

ABSTRACT

Foodborne illnesses, particularly those caused by Salmonella enterica with its extensive array of over 2600 serovars, present a significant public health challenge. Therefore, prompt and precise identification of S. enterica serovars is essential for clinical relevance, which facilitates the understanding of S. enterica transmission routes and the determination of outbreak sources. Classical serotyping methods via molecular subtyping and genomic markers currently suffer from various limitations, such as labour intensiveness, time consumption, etc. Therefore, there is a pressing need to develop new diagnostic techniques. Surface-enhanced Raman spectroscopy (SERS) is a non-invasive diagnostic technique that can generate Raman spectra, based on which rapid and accurate discrimination of bacterial pathogens could be achieved. To generate SERS spectra, a Raman spectrometer is needed to detect and collect signals, which are divided into two types: the expensive benchtop spectrometer and the inexpensive handheld spectrometer. In this study, we compared the performance of two Raman spectrometers to discriminate four closely associated S. enterica serovars, that is, S. enterica subsp. enterica serovar dublin, enteritidis, typhi and typhimurium. Six machine learning algorithms were applied to analyse these SERS spectra. The support vector machine (SVM) model showed the highest accuracy for both handheld (99.97%) and benchtop (99.38%) Raman spectrometers. This study demonstrated that handheld Raman spectrometers achieved similar prediction accuracy as benchtop spectrometers when combined with machine learning models, providing an effective solution for rapid, accurate and cost-effective identification of closely associated S. enterica serovars.


Subject(s)
Salmonella enterica , Serogroup , Spectrum Analysis, Raman , Support Vector Machine , Spectrum Analysis, Raman/methods , Salmonella enterica/isolation & purification , Humans , Algorithms
15.
Dis Aquat Organ ; 158: 27-36, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38661135

ABSTRACT

Streptococcus agalactiae infection is one of the major factors limiting the expansion of tilapia farming globally. In this study, we investigated the serotype distribution, virulence and antimicrobial resistance of S. agalactiae isolates from tilapia farmed in Lake Volta, Ghana. Isolates from 300 moribund fish were characterised by Gram staining, MALDI-TOF/MS and 16S rRNA sequencing. Serotype identification was based on multiplex polymerase chain reaction (PCR) amplification of the capsular polysaccharide genes. Detection of virulence genes (cfb, fbsA and cspA) and histopathology were used to infer the pathogenicity of the isolates. The susceptibility of isolates to antibiotics was tested using the Kirby-Bauer disk diffusion assay. All 32 isolates identified as S. agalactiae were of serotype Ia. This was notably different from isolates previously collected from the farms in 2017, which belonged to serotype Ib, suggesting a possible serotype replacement. The prevalence of the pathogen was related to the scale of farm operation, with large-scale farms showing higher S. agalactiae positivity. Data from histopathological analysis and PCR amplification of targeted virulence genes confirmed the virulence potential and ability of the isolates to cause systemic infection in tilapia. Except for gentamicin, the majority of the isolates were less resistant to the tested antibiotics. All isolates were fully sensitive to oxytetracycline, erythromycin, florfenicol, enrofloxacin, ampicillin and amoxicillin. This study has improved our understanding of the specific S. agalactiae serotypes circulating in Lake Volta and demonstrates the need for continuous monitoring to guide the use of antimicrobials and vaccines against streptococcal infections in Ghanaian aquaculture systems.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Fish Diseases , Serogroup , Streptococcal Infections , Streptococcus agalactiae , Animals , Streptococcus agalactiae/drug effects , Streptococcus agalactiae/genetics , Streptococcus agalactiae/pathogenicity , Ghana/epidemiology , Fish Diseases/microbiology , Streptococcal Infections/veterinary , Streptococcal Infections/microbiology , Streptococcal Infections/epidemiology , Virulence , Anti-Bacterial Agents/pharmacology , Lakes/microbiology , Cichlids , Aquaculture
16.
Enferm. infecc. microbiol. clín. (Ed. impr.) ; 42(4): 179-186, Abr. 2024. graf, tab
Article in Spanish | IBECS | ID: ibc-232172

ABSTRACT

Introducción: Streptococcus pneumoniae causa enfermedades graves en la población susceptible. La vacuna neumocócica conjugada (PCV) 13-valente (PCV13) se incluyó en el calendario infantil en 2011. Este estudio analiza la evolución de los serotipos de neumococo y de sus resistencias tras la PCV13. Métodos: Se incluyeron los neumococos serotipados en Galicia en 2011-2021. Se estudió la sensibilidad antibiótica siguiendo criterios EUCAST. Se analizaron los datos en 3 subperíodos: inicial (2011-2013), medio (2014-2017) y final (2018-2021). Se calcularon las prevalencias de los serotipos y el porcentaje de resistencia a los antibióticos más representativos. Resultados: Se incluyeron 2.869 aislados. Inicialmente el 42,7% presentaba tipos capsulares incluidos en la PCV13, frente al 15,4% al final. Los incluidos en la PCV20 y no en la PCV13 y PCV15 fueron el 12,5% inicialmente y el 41,3% al final. El 26,4% de los serotipos a lo largo del estudio no estaban incluidos en ninguna vacuna. La prevalencia del serotipo 8 se multiplicó casi por 8 y la del 12F se triplicó. El serotipo 19A fue el más resistente inicialmente. La resistencia de los serotipos 11A y 15A aumentó a lo largo del estudio. Conclusiones: La introducción de la PCV13 en la población infantil determinó un cambio en los serotipos de neumococo hacia los incluidos en la PCV20 y los no incluidos en ninguna vacuna. El serotipo 19A inicialmente fue el más resistente, y el 15A, no incluido en ninguna vacuna, merece un especial seguimiento. El serotipo 8, que fue el que más se incrementó, no mostró resistencia destacable.(AU)


Introduction: Streptococcus pneumoniae causes serious diseases in the susceptible population. The 13-valent pneumococci conjugate vaccine (PCV13) was included in the children's calendar in 2011. The objective of the study was to analyze the evolution of pneumococcal serotypes and their resistance after PCV13. Methods: This study included the pneumococci serotyped in Galicia in 2011-2021. Antibiotic susceptibility was analyzed following EUCAST criteria. The data was analyzed in 3 sub-periods: initial (2011-2013), middle (2014-2017) and final (2018-2021). The prevalence of serotypes and their percentage of resistance to the most representative antibiotics were calculated. Results: A total of 2.869 isolates were included. Initially, 42.7% isolates presented capsular types included in PCV13, compared to 15.4% at the end. Those included in PCV20 and not in PCV13 and PCV15 were 12.5% at baseline and 41.3% at the end; 26.4% of the isolates throughout the study had serotypes not included in any vaccine. The prevalence of serotype 8 multiplied almost by 8 and that of 12F tripled. The 19A serotype was initially the most resistant, while the resistance of serotypes 11A and 15A increased throughout the study. Conclusions: The introduction of PCV13 in the pediatric population determined a change in pneumococcal serotypes towards those included in PCV20 and those not included in any vaccine. Serotype 19A was initially the most resistant and the 15A, not included in any vaccine, deserves special follow-up. Serotype 8, which increased the most, did not show remarkable resistance.(AU)


Subject(s)
Humans , Male , Female , Child , Streptococcus pneumoniae/genetics , Drug Resistance, Microbial , Pneumococcal Infections , Prevalence , Serogroup , Spain , Communicable Diseases , Microbiology
17.
Microb Genom ; 10(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38498591

ABSTRACT

Background. Despite use of highly effective conjugate vaccines, invasive pneumococcal disease (IPD) remains a leading cause of morbidity and mortality and disproportionately affects Indigenous populations. Although included in the 13-valent pneumococcal conjugate vaccine (PCV13), which was introduced in 2010, serotype 3 continues to cause disease among Indigenous communities in the Southwest USA. In the Navajo Nation, serotype 3 IPD incidence increased among adults (3.8/100 000 in 2001-2009 and 6.2/100 000 in 2011-2019); in children the disease persisted although the rates dropped from 5.8/100 000 to 2.3/100 000.Methods. We analysed the genomic epidemiology of serotype 3 isolates collected from 129 adults and 63 children with pneumococcal carriage (n=61) or IPD (n=131) from 2001 to 2018 of the Navajo Nation. Using whole-genome sequencing data, we determined clade membership and assessed changes in serotype 3 population structure over time.Results. The serotype 3 population structure was characterized by three dominant subpopulations: clade II (n=90, 46.9 %) and clade Iα (n=59, 30.7 %), which fall into Clonal Complex (CC) 180, and a non-CC180 clade (n=43, 22.4 %). The proportion of clade II-associated IPD cases increased significantly from 2001 to 2010 to 2011-2018 among adults (23.1-71.8 %; P<0.001) but not in children (27.3-33.3 %; P=0.84). Over the same period, the proportion of clade II-associated carriage increased; this was statistically significant among children (23.3-52.6 %; P=0.04) but not adults (0-50.0 %, P=0.08).Conclusions. In this setting with persistent serotype 3 IPD and carriage, clade II has increased since 2010. Genomic changes may be contributing to the observed trends in serotype 3 carriage and disease over time.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Child , Adult , Humans , Vaccines, Conjugate , Serogroup , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines , Incidence
18.
Cells ; 13(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38534358

ABSTRACT

Nontyphoidal salmonellosis is an important foodborne and zoonotic infection that causes significant global public health concern. Diverse serovars are multidrug-resistant and encode several virulence indicators; however, little is known on the role prophages play in driving these traits. Here, we extracted prophages from seventy-five Salmonella genomes which represent the fifteen important serovars in the United Kingdom. We analyzed the intact prophages for the presence of virulence genes and established their genomic relationships. We identified 615 prophages from the Salmonella strains, from which 195 prophages are intact, 332 are incomplete, while 88 are questionable. The average prophage carriage was found to be 'extreme' in S. Heidelberg, S. Inverness, and S. Newport (10.2-11.6 prophages/strain), 'high' in S. Infantis, S. Stanley, S. Typhimurium, and S. Virchow (8.2-9.0 prophages/strain), 'moderate' in S. Agona, S. Braenderup, S. Bovismorbificans, S. Choleraesuis, S. Dublin, and S. Java (6.0-7.8 prophages/strain), and 'low' in S. Javiana and S. Enteritidis (5.8 prophages/strain). Cumulatively, 61 virulence genes (1500 gene copies) were detected from representative intact prophages and linked to Salmonella delivery/secretion system (42.62%), adherence (32.7%), magnesium uptake (3.88%), regulation (5%), stress/survival (1.6%), toxins (10%), and antivirulence (1.6%). Diverse clusters were formed among the intact prophages and with bacteriophages of other enterobacteria, suggesting different lineages and associations. Our work provides a strong body of data to support the contributions diverse prophages make to the pathogenicity of Salmonella, including thirteen previously unexplored serovars.


Subject(s)
Salmonella enterica , Salmonella enterica/genetics , Virulence/genetics , Prophages/genetics , Serogroup , Salmonella
19.
Mar Drugs ; 22(3)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38535460

ABSTRACT

The genus Gambierdiscus produces an array of bioactive hydrophilic and lipophilic secondary metabolites that range in mode of action and toxicity. In this study, the metabolite fingerprint was mapped for thirteen Gambierdiscus, five Coolia and two Fukuyoa species (34 isolates) by assessing the production of 56 characterised secondary metabolites. Gambierdiscus polynesiensis was the only species to produce Pacific-ciguatoxin-3B (P-CTX3B), P-CTX3C, iso-P-CTX3B/C, P-CTX4A, P-CTX4B and iso-P-CTX4A/B. G. australes produced maitotoxin-1 (MTX-1) and MTX-5, G. cheloniae produced MTX-6 and G. honu produced MTX-7. Ubiquitous production of 44-methylgambierone was observed amongst all the Gambierdiscus isolates, with nine species also producing gambierone. Additional gambierone analogues, including anhydrogambierone (tentatively described herein), were also detected in all Gambierdiscus species, two Coolia and two Fukuyoa species. Gambieroxide was detected in G. lewisii and G. pacificus and gambieric acid A was detected in ten Gambierdiscus species, with G. australes (CAWD381) being the only isolate to produce gambieric acids A-D. This study has demonstrated that the isolates tested to date produce the known CTXs or MTXs, but not both, and highlighted several species that produced 'unknown' compounds displaying characteristics of cyclic polyethers, which will be the focus of future compound discovery efforts.


Subject(s)
Ciguatoxins , Dinoflagellida , Ethers , Serogroup
20.
Viruses ; 16(3)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38543728

ABSTRACT

Epizootic hemorrhagic disease (EHD) is a non-contagious arthropod-transmitted viral disease and a World Organization for Animal Health (WOAH)-listed disease of domestic and wild ruminants since 2008. EHDV is transmitted among susceptible animals by a few species of midges of genus Culicoides. During the fall of 2021, a large outbreak caused by the epizootic hemorrhagic disease virus (EHDV), identified as serotype 8, was reported in Tunisian dairy and beef farms with Bluetongue virus (BTV)-like clinical signs. The disease was detected later in the south of Italy, in Spain, in Portugal and, more recently, in France, where it caused severe infections in cattle. This was the first evidence of EHDV-8 circulation outside Australia since 1982. In this study, we analyzed the epidemiological situation of the 2021-2022 EHDV outbreaks reported in Tunisia, providing a detailed description of the spatiotemporal evolution of the disease. We attempted to identify the eco-climatic factors associated with infected areas using generalized linear models (GLMs). Our results demonstrated that environmental factors mostly associated with the presence of C. imicola, such as digital elevation model (DEM), slope, normalized difference vegetation index (NDVI), and night-time land surface temperature (NLST)) were by far the most explanatory variables for EHD repartition cases in Tunisia that may have consequences in neighboring countries, both in Africa and Europe through the spread of infected vectors. The risk maps elaborated could be useful for disease control and prevention strategies.


Subject(s)
Animal Diseases , Bluetongue virus , Ceratopogonidae , Hemorrhagic Disease Virus, Epizootic , Reoviridae Infections , Cattle , Animals , Reoviridae Infections/epidemiology , Reoviridae Infections/veterinary , Serogroup , Tunisia/epidemiology , Ruminants
SELECTION OF CITATIONS
SEARCH DETAIL
...